search

UMD    AML






A. James Clark School of Engineering Associate Professor Alireza Khaligh (ECE/ISR) is the Principal Investigator for a new three-year, $2.37M Department of Energy (DOE) cooperative agreement, “Compact and Low-Cost Microinverter for Residential Systems.” Professor Patrick McCluskey (ME) is the co-Principal Investigator. The team also includes Dr. Patrick Chapman, SunPower Corporation, San Jose, Calif.; and Assistant Professor Fariborz Musavi, Department of Electrical Engineering, Washington State University Vancouver.

Khaligh directs the Maryland Power Electronics Laboratory and McCluskey is affiliated with the Center for Advanced Life Cycle Engineering.

The $2.37M award includes funding from the DOE and a 20 percent awardee cost share from the participating collaborators.

The project is one of nine DOE recently announced as part of its goal of cutting the cost of solar energy system power electronics in half by 2030. Together, the projects are worth a total of $20M. More information about the DOE's Advanced Power Electronics Design for Solar Applications program can be found here.

Hardware innovations are critical to address solar photovoltaic (PV) reliability challenges and drive down the cost of installing and maintaining a PV solar system, the DOE said in its announcement. Power electronics, which convert electricity from one form to another, are the critical link between PV arrays and the electric grid. Advances in power electronics can help grid operators rapidly detect and respond to problems, protect against physical and cyber vulnerabilities, and enable consumers to manage electricity use. Advanced solar power electronics can help deliver power safely, integrate PV with storage controls, and ensure power reliability.

Khaligh’s team will focus on developing a new generation of residential system microinverters using emerging gallium nitride (GaN) semiconductors. The new microinverters will have reduced costs of manufacturing and enhanced reliability, thermal management and packaging. The resulting products will be commercialized by SunPower, a market leader in high performance PV systems technology for residential, commercial and power plant applications.

“We are excited to be a part of revolution in the solar PV industry,” said Khaligh.

“There is remarkable potential for power electronics technologies to improve the reliability and flexibility of solar energy on the grid,” said Daniel Simmons, the DOE's principal deputy assistant secretary for the Office of Energy Efficiency and Renewable Energy. “These projects represent a critical step in exploring the potential grid services such advanced technologies can provide.”

The nine research projects also will help the DOE accelerate the penetration of low-cost PV systems in the U.S.; enhance U.S. international competitiveness in this important field; and create more U.S. technology and manufacturing jobs.

About the DOE Solar Energy Technologies Office
The U.S. Department of Energy Solar Energy Technologies Office supports early-stage research and development to improve the affordability, reliability and performance of solar technologies on the grid.



Related Articles:
Khaligh, McCluskey receive Boeing funding for more electric aircraft
UMD Researchers Creating First Onboard Fast-Charging System for Electric Vehicles
Robo Raven III harnesses solar power
Khaligh is PI for hybrid energy storage system NSF GOALI grant
Profs. Dasgupta, McCluskey and Students Present at ITherm 2018

April 24, 2018


«Previous Story  

 

 

Current Headlines

Search Open for Full-Time Faculty Positions in Mechanical Engineering

Maryland Engineers Take On Big Challenges in Medicine

CEEE Study Explores How AI Can Reduce HVAC Energy Consumption

Justin Di Palo: Advancing Sustainable Living

Colton Honored with Microfluidics on Glass Award

How Much Wood Could a Heat Pump Dry?

Jump Start Program Gives CEEE Grad Students a Boost

UMD to Host International Graduate Engineering Course on Sustainability

State-of-the-Art 3D Nanoprinter Now at UMD

Das Named Pioneering Researcher by Chemical Communications

 
 
Back to top  
AML Home Clark School Home UMD Home ENME Home